Central limit theorem for sums of series weakly dependent random variables

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Local Limit Theorem for Sums of Dependent Random Variables

A version of central limit is established normalized sums dependent random when a theorem is and conditional are sufficiently The proof ideas from by representing density as integral of score function a translation of distributions. 1980 Subject 60F99.

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

A central limit theorem for triangular arrays of weakly dependent random variables

We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi (1999). The proof uses an apparently new variant of the Lindeberg method where the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applicati...

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lithuanian Mathematical Journal

سال: 1962

ISSN: 2669-1973

DOI: 10.15388/lmj.1962.19352